\(\int \sec ^2(c+d x) (a+b \sec (c+d x))^{5/2} \, dx\) [546]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (warning: unable to verify)
   Maple [B] (verified)
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 23, antiderivative size = 333 \[ \int \sec ^2(c+d x) (a+b \sec (c+d x))^{5/2} \, dx=-\frac {2 a (a-b) \sqrt {a+b} \left (3 a^2+29 b^2\right ) \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{21 b^2 d}-\frac {2 (a-b) \sqrt {a+b} \left (3 a^2-24 a b+5 b^2\right ) \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{21 b d}+\frac {2 \left (3 a^2+5 b^2\right ) \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{21 d}+\frac {2 a (a+b \sec (c+d x))^{3/2} \tan (c+d x)}{7 d}+\frac {2 (a+b \sec (c+d x))^{5/2} \tan (c+d x)}{7 d} \]

[Out]

-2/21*a*(a-b)*(3*a^2+29*b^2)*cot(d*x+c)*EllipticE((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),((a+b)/(a-b))^(1/2))*(a+b
)^(1/2)*(b*(1-sec(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/b^2/d-2/21*(a-b)*(3*a^2-24*a*b+5*b^2)*c
ot(d*x+c)*EllipticF((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),((a+b)/(a-b))^(1/2))*(a+b)^(1/2)*(b*(1-sec(d*x+c))/(a+b
))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/b/d+2/7*a*(a+b*sec(d*x+c))^(3/2)*tan(d*x+c)/d+2/7*(a+b*sec(d*x+c))^(5
/2)*tan(d*x+c)/d+2/21*(3*a^2+5*b^2)*(a+b*sec(d*x+c))^(1/2)*tan(d*x+c)/d

Rubi [A] (verified)

Time = 0.69 (sec) , antiderivative size = 333, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.217, Rules used = {3920, 4087, 4090, 3917, 4089} \[ \int \sec ^2(c+d x) (a+b \sec (c+d x))^{5/2} \, dx=-\frac {2 (a-b) \sqrt {a+b} \left (3 a^2-24 a b+5 b^2\right ) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{21 b d}-\frac {2 a (a-b) \sqrt {a+b} \left (3 a^2+29 b^2\right ) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{21 b^2 d}+\frac {2 \left (3 a^2+5 b^2\right ) \tan (c+d x) \sqrt {a+b \sec (c+d x)}}{21 d}+\frac {2 \tan (c+d x) (a+b \sec (c+d x))^{5/2}}{7 d}+\frac {2 a \tan (c+d x) (a+b \sec (c+d x))^{3/2}}{7 d} \]

[In]

Int[Sec[c + d*x]^2*(a + b*Sec[c + d*x])^(5/2),x]

[Out]

(-2*a*(a - b)*Sqrt[a + b]*(3*a^2 + 29*b^2)*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]]
, (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(21*b^2*d) -
(2*(a - b)*Sqrt[a + b]*(3*a^2 - 24*a*b + 5*b^2)*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a
+ b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(21*b*d)
 + (2*(3*a^2 + 5*b^2)*Sqrt[a + b*Sec[c + d*x]]*Tan[c + d*x])/(21*d) + (2*a*(a + b*Sec[c + d*x])^(3/2)*Tan[c +
d*x])/(7*d) + (2*(a + b*Sec[c + d*x])^(5/2)*Tan[c + d*x])/(7*d)

Rule 3917

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[-2*(Rt[a + b, 2]/(b*
f*Cot[e + f*x]))*Sqrt[(b*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[(-b)*((1 + Csc[e + f*x])/(a - b))]*EllipticF[ArcSin
[Sqrt[a + b*Csc[e + f*x]]/Rt[a + b, 2]], (a + b)/(a - b)], x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 3920

Int[csc[(e_.) + (f_.)*(x_)]^2*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-Cot[e + f*x])*(
(a + b*Csc[e + f*x])^m/(f*(m + 1))), x] + Dist[m/(m + 1), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m - 1)*(b + a
*Csc[e + f*x]), x], x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0] && GtQ[m, 0]

Rule 4087

Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))
, x_Symbol] :> Simp[(-B)*Cot[e + f*x]*((a + b*Csc[e + f*x])^m/(f*(m + 1))), x] + Dist[1/(m + 1), Int[Csc[e + f
*x]*(a + b*Csc[e + f*x])^(m - 1)*Simp[b*B*m + a*A*(m + 1) + (a*B*m + A*b*(m + 1))*Csc[e + f*x], x], x], x] /;
FreeQ[{a, b, A, B, e, f}, x] && NeQ[A*b - a*B, 0] && NeQ[a^2 - b^2, 0] && GtQ[m, 0]

Rule 4089

Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)
], x_Symbol] :> Simp[-2*(A*b - a*B)*Rt[a + b*(B/A), 2]*Sqrt[b*((1 - Csc[e + f*x])/(a + b))]*(Sqrt[(-b)*((1 + C
sc[e + f*x])/(a - b))]/(b^2*f*Cot[e + f*x]))*EllipticE[ArcSin[Sqrt[a + b*Csc[e + f*x]]/Rt[a + b*(B/A), 2]], (a
*A + b*B)/(a*A - b*B)], x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[a^2 - b^2, 0] && EqQ[A^2 - B^2, 0]

Rule 4090

Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)
], x_Symbol] :> Dist[A - B, Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] + Dist[B, Int[Csc[e + f*x]*((1 +
 Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x]]), x], x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[a^2 - b^2, 0] && NeQ[A
^2 - B^2, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {2 (a+b \sec (c+d x))^{5/2} \tan (c+d x)}{7 d}+\frac {5}{7} \int \sec (c+d x) (b+a \sec (c+d x)) (a+b \sec (c+d x))^{3/2} \, dx \\ & = \frac {2 a (a+b \sec (c+d x))^{3/2} \tan (c+d x)}{7 d}+\frac {2 (a+b \sec (c+d x))^{5/2} \tan (c+d x)}{7 d}+\frac {2}{7} \int \sec (c+d x) \sqrt {a+b \sec (c+d x)} \left (4 a b+\frac {1}{2} \left (3 a^2+5 b^2\right ) \sec (c+d x)\right ) \, dx \\ & = \frac {2 \left (3 a^2+5 b^2\right ) \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{21 d}+\frac {2 a (a+b \sec (c+d x))^{3/2} \tan (c+d x)}{7 d}+\frac {2 (a+b \sec (c+d x))^{5/2} \tan (c+d x)}{7 d}+\frac {4}{21} \int \frac {\sec (c+d x) \left (\frac {1}{4} b \left (27 a^2+5 b^2\right )+\frac {1}{4} a \left (3 a^2+29 b^2\right ) \sec (c+d x)\right )}{\sqrt {a+b \sec (c+d x)}} \, dx \\ & = \frac {2 \left (3 a^2+5 b^2\right ) \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{21 d}+\frac {2 a (a+b \sec (c+d x))^{3/2} \tan (c+d x)}{7 d}+\frac {2 (a+b \sec (c+d x))^{5/2} \tan (c+d x)}{7 d}-\frac {1}{21} \left ((a-b) \left (3 a^2-24 a b+5 b^2\right )\right ) \int \frac {\sec (c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx+\frac {1}{21} \left (a \left (3 a^2+29 b^2\right )\right ) \int \frac {\sec (c+d x) (1+\sec (c+d x))}{\sqrt {a+b \sec (c+d x)}} \, dx \\ & = -\frac {2 a (a-b) \sqrt {a+b} \left (3 a^2+29 b^2\right ) \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{21 b^2 d}-\frac {2 (a-b) \sqrt {a+b} \left (3 a^2-24 a b+5 b^2\right ) \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{21 b d}+\frac {2 \left (3 a^2+5 b^2\right ) \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{21 d}+\frac {2 a (a+b \sec (c+d x))^{3/2} \tan (c+d x)}{7 d}+\frac {2 (a+b \sec (c+d x))^{5/2} \tan (c+d x)}{7 d} \\ \end{align*}

Mathematica [A] (warning: unable to verify)

Time = 11.88 (sec) , antiderivative size = 474, normalized size of antiderivative = 1.42 \[ \int \sec ^2(c+d x) (a+b \sec (c+d x))^{5/2} \, dx=-\frac {2 \sqrt {\cos ^2\left (\frac {1}{2} (c+d x)\right ) \sec (c+d x)} (a+b \sec (c+d x))^{5/2} \left (2 a \left (3 a^3+3 a^2 b+29 a b^2+29 b^3\right ) \sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}} \sqrt {\frac {b+a \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} E\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {a-b}{a+b}\right )-2 b \left (3 a^3+27 a^2 b+29 a b^2+5 b^3\right ) \sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}} \sqrt {\frac {b+a \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} \operatorname {EllipticF}\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {a-b}{a+b}\right )+a \left (3 a^2+29 b^2\right ) \cos (c+d x) (b+a \cos (c+d x)) \sec ^2\left (\frac {1}{2} (c+d x)\right ) \tan \left (\frac {1}{2} (c+d x)\right )\right )}{21 b d (b+a \cos (c+d x))^3 \sqrt {\sec ^2\left (\frac {1}{2} (c+d x)\right )} \sec ^{\frac {5}{2}}(c+d x)}+\frac {\cos ^2(c+d x) (a+b \sec (c+d x))^{5/2} \left (\frac {2 a \left (3 a^2+29 b^2\right ) \sin (c+d x)}{21 b}+\frac {2}{21} \sec (c+d x) \left (9 a^2 \sin (c+d x)+5 b^2 \sin (c+d x)\right )+\frac {6}{7} a b \sec (c+d x) \tan (c+d x)+\frac {2}{7} b^2 \sec ^2(c+d x) \tan (c+d x)\right )}{d (b+a \cos (c+d x))^2} \]

[In]

Integrate[Sec[c + d*x]^2*(a + b*Sec[c + d*x])^(5/2),x]

[Out]

(-2*Sqrt[Cos[(c + d*x)/2]^2*Sec[c + d*x]]*(a + b*Sec[c + d*x])^(5/2)*(2*a*(3*a^3 + 3*a^2*b + 29*a*b^2 + 29*b^3
)*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticE[ArcS
in[Tan[(c + d*x)/2]], (a - b)/(a + b)] - 2*b*(3*a^3 + 27*a^2*b + 29*a*b^2 + 5*b^3)*Sqrt[Cos[c + d*x]/(1 + Cos[
c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticF[ArcSin[Tan[(c + d*x)/2]], (a - b)
/(a + b)] + a*(3*a^2 + 29*b^2)*Cos[c + d*x]*(b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2]))/(21*b*d
*(b + a*Cos[c + d*x])^3*Sqrt[Sec[(c + d*x)/2]^2]*Sec[c + d*x]^(5/2)) + (Cos[c + d*x]^2*(a + b*Sec[c + d*x])^(5
/2)*((2*a*(3*a^2 + 29*b^2)*Sin[c + d*x])/(21*b) + (2*Sec[c + d*x]*(9*a^2*Sin[c + d*x] + 5*b^2*Sin[c + d*x]))/2
1 + (6*a*b*Sec[c + d*x]*Tan[c + d*x])/7 + (2*b^2*Sec[c + d*x]^2*Tan[c + d*x])/7))/(d*(b + a*Cos[c + d*x])^2)

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(2342\) vs. \(2(299)=598\).

Time = 24.00 (sec) , antiderivative size = 2343, normalized size of antiderivative = 7.04

method result size
default \(\text {Expression too large to display}\) \(2343\)

[In]

int(sec(d*x+c)^2*(a+b*sec(d*x+c))^(5/2),x,method=_RETURNVERBOSE)

[Out]

2/21/d/b*(a+b*sec(d*x+c))^(1/2)/(b+a*cos(d*x+c))/(cos(d*x+c)+1)*(12*a^3*b*sin(d*x+c)+34*a*b^3*sin(d*x+c)+5*b^4
*sin(d*x+c)+18*a^2*b^2*sin(d*x+c)+3*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c)-csc(d
*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a^3*b+29*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1)
)^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a^2*b^2+29*(1/(
a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(
cos(d*x+c)+1))^(1/2)*a*b^3-5*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(c
os(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*b^4*cos(d*x+c)^2+3*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)
+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a^4*cos(d*x+
c)^2-10*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(
cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*b^4*cos(d*x+c)+6*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/
(cos(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a^4*cos(d*x+c)-3*(1/(a+b)*(b+a*cos(
d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))
^(1/2)*a^3*b-27*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^
(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a^2*b^2-29*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF(
cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a*b^3+5*a*b^3*cos(d*x+c)*sin(d*x+
c)+3*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(cos
(d*x+c)/(cos(d*x+c)+1))^(1/2)*a^4+12*a*b^3*tan(d*x+c)*sec(d*x+c)+9*a^3*b*cos(d*x+c)*sin(d*x+c)+29*a^2*b^2*cos(
d*x+c)*sin(d*x+c)-5*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+
b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*b^4+5*tan(d*x+c)*b^4+29*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))
^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a^2*b^2*cos(d*x+
c)^2+29*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c)
-csc(d*x+c),((a-b)/(a+b))^(1/2))*a*b^3*cos(d*x+c)^2-6*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/
(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a^3*b*cos(d*x+c)-54*EllipticF(c
ot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x
+c)+1))^(1/2)*a^2*b^2*cos(d*x+c)-58*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x
+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a*b^3*cos(d*x+c)+6*(1/(a+b)*(b+a*cos(d*x+c))/(cos
(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a^3*b
*cos(d*x+c)+58*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticE(cot
(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a^2*b^2*cos(d*x+c)+58*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*
(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a*b^3*cos(d*x+c)-3*Elli
pticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(
cos(d*x+c)+1))^(1/2)*a^3*b*cos(d*x+c)^2-27*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*
cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a^2*b^2*cos(d*x+c)^2-29*EllipticF(cot(d*x+
c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))
^(1/2)*a*b^3*cos(d*x+c)^2+3*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*
EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a^3*b*cos(d*x+c)^2+3*b^4*tan(d*x+c)*sec(d*x+c)+3*b^4*tan(
d*x+c)*sec(d*x+c)^2+18*a^2*b^2*tan(d*x+c)+3*a^4*cos(d*x+c)*sin(d*x+c)+12*a*b^3*tan(d*x+c))

Fricas [F]

\[ \int \sec ^2(c+d x) (a+b \sec (c+d x))^{5/2} \, dx=\int { {\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {5}{2}} \sec \left (d x + c\right )^{2} \,d x } \]

[In]

integrate(sec(d*x+c)^2*(a+b*sec(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

integral((b^2*sec(d*x + c)^4 + 2*a*b*sec(d*x + c)^3 + a^2*sec(d*x + c)^2)*sqrt(b*sec(d*x + c) + a), x)

Sympy [F]

\[ \int \sec ^2(c+d x) (a+b \sec (c+d x))^{5/2} \, dx=\int \left (a + b \sec {\left (c + d x \right )}\right )^{\frac {5}{2}} \sec ^{2}{\left (c + d x \right )}\, dx \]

[In]

integrate(sec(d*x+c)**2*(a+b*sec(d*x+c))**(5/2),x)

[Out]

Integral((a + b*sec(c + d*x))**(5/2)*sec(c + d*x)**2, x)

Maxima [F]

\[ \int \sec ^2(c+d x) (a+b \sec (c+d x))^{5/2} \, dx=\int { {\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {5}{2}} \sec \left (d x + c\right )^{2} \,d x } \]

[In]

integrate(sec(d*x+c)^2*(a+b*sec(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

integrate((b*sec(d*x + c) + a)^(5/2)*sec(d*x + c)^2, x)

Giac [F]

\[ \int \sec ^2(c+d x) (a+b \sec (c+d x))^{5/2} \, dx=\int { {\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {5}{2}} \sec \left (d x + c\right )^{2} \,d x } \]

[In]

integrate(sec(d*x+c)^2*(a+b*sec(d*x+c))^(5/2),x, algorithm="giac")

[Out]

integrate((b*sec(d*x + c) + a)^(5/2)*sec(d*x + c)^2, x)

Mupad [F(-1)]

Timed out. \[ \int \sec ^2(c+d x) (a+b \sec (c+d x))^{5/2} \, dx=\int \frac {{\left (a+\frac {b}{\cos \left (c+d\,x\right )}\right )}^{5/2}}{{\cos \left (c+d\,x\right )}^2} \,d x \]

[In]

int((a + b/cos(c + d*x))^(5/2)/cos(c + d*x)^2,x)

[Out]

int((a + b/cos(c + d*x))^(5/2)/cos(c + d*x)^2, x)